所谓"大数据分析",其和"小数据分析"的唯一差别在于数据量以及数据量带来的对于数据存储、查询及分析吞吐量的要求。本质上,"大数据分析"仍然需要通过数据分析来发现现状,找到导致现状的根源要素,并且通过模型与预测分析技术来对改善进行预测与优化,并且实现企业运营各个领域的持续改善与创新。要谈"大数据分析"的中国现状,首先必须深入了解"数据分析"在国内的应用情况。
国内企业,不论是国企还是民企,真正在业务决策中以数据分析结果为依据的,主要集中在银行,保险,电信和电商等几个行业。以IT预算最充沛,人员能力最强的银行为例,目前主要是大型银行在导入数据分析。中小银行尚在观望与学习阶段,人员与能力建设正在起步阶段。数据分析的应用范围主要集中在信用风险、流程优化、市场营销、成本与预算等几个方面,深度尚可,但广度一般,尚未扩充到运营管理的所有领域。
根据《2014-2018年中国大数据产业发展前景与投资战略规划分析报告》分析,目前,在对大数据的价值的态度上,除了6.9%的企业认为数据没有价值以外,绝大多数企业都认为数据具有或可能具有很高的价值,可见大数据的价值已经在企业中获得了广泛的认可。未来随着越来越多的大数据分析平台和工具的开始广泛应用,大数据的价值将会被进一步释放并获得企业认可。
图表1:中国企业对大数据的态度
至于支撑起我国庞大GDP的制造业、建筑业和贸易业,在运用数据分析进行业务决策方面,则尚未见规模。其IT开支仍然主要集中在基础架构与流程化的软件套件领域(如ERP,CRM,HRM,SCM等),部分企业开始导入商业智能(报表、制图、管理驾驶舱),而数据分析应用远远没有进入规模发展阶段。以我国制造业企业为例,从五、六年前开始热炒"六西格玛"、"全面质量管理","精益生产",尽管这些举措对中国制造、中国创造等带来本质变化尚需时日,但是就提升企业决策能力和管理水平而言,这些举措的的确起到了一定的作用,对于中国企业从拍脑袋到用数据决策这一本质转变打下了一个基础。